24x^2+3x+1852=0

Simple and best practice solution for 24x^2+3x+1852=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24x^2+3x+1852=0 equation:


Simplifying
24x2 + 3x + 1852 = 0

Reorder the terms:
1852 + 3x + 24x2 = 0

Solving
1852 + 3x + 24x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
24 the coefficient of the squared term: 

Divide each side by '24'.
77.16666667 + 0.125x + x2 = 0

Move the constant term to the right:

Add '-77.16666667' to each side of the equation.
77.16666667 + 0.125x + -77.16666667 + x2 = 0 + -77.16666667

Reorder the terms:
77.16666667 + -77.16666667 + 0.125x + x2 = 0 + -77.16666667

Combine like terms: 77.16666667 + -77.16666667 = 0.00000000
0.00000000 + 0.125x + x2 = 0 + -77.16666667
0.125x + x2 = 0 + -77.16666667

Combine like terms: 0 + -77.16666667 = -77.16666667
0.125x + x2 = -77.16666667

The x term is 0.125x.  Take half its coefficient (0.0625).
Square it (0.00390625) and add it to both sides.

Add '0.00390625' to each side of the equation.
0.125x + 0.00390625 + x2 = -77.16666667 + 0.00390625

Reorder the terms:
0.00390625 + 0.125x + x2 = -77.16666667 + 0.00390625

Combine like terms: -77.16666667 + 0.00390625 = -77.16276042
0.00390625 + 0.125x + x2 = -77.16276042

Factor a perfect square on the left side:
(x + 0.0625)(x + 0.0625) = -77.16276042

Can't calculate square root of the right side.

The solution to this equation could not be determined.

See similar equations:

| 35x-24x^2+3=0 | | 42-7x=11x+16 | | 8(v-3)+36=2 | | (x+1)/3+x=1-3/4x | | 3x-4=10x-50 | | 4p+2q=32 | | 7x+30=4x+75 | | 7(x-9)=-52.2 | | (r-7)2=289 | | 218-4x=32x+22 | | 9(a+1)=65.7 | | 2x+10x=83+x | | -6.5=5c-9 | | 8e-9=-3.4 | | 11x-7x=79-35x | | 2p=17.4 | | x+8x-19.5=0 | | -8-6=8-8x | | 12x+11=109 | | (2x+5)-(x+3)= | | 4x+5x+9x=3x+5x+53 | | 2p+4p=22 | | Z=(1+i)(2i+3)/1-i+i^6+(2-i)^3 | | 5x+11=110-5x | | z^2+5=0 | | 2(y+5)=17-3y | | (5x+1)+5-2(3+7x)=3 | | 34-5(p+1)=4 | | -4(x-2)=9 | | -4(x-2)=9 | | 3(n-5)=-21 | | 3x/4-36/4-3x/38-8/38=3x/11+4/11+16/36+2x/36 |

Equations solver categories